skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. In 2018, the International Maritime Organization adopted a plan to reduce greenhouse gas emissions from ships. As a result, ocean carriers and cruise lines are exploring alternative fuels, such as ammonia, which offers zero CO2emissions. Understanding ammonia-based fuel’s impact on range, speed, and fuel logistics can help companies assess its benefits and limitations. To address this, a mixed-integer non-linear programming model is developed to determine the optimal ships’ routes with the objective of minimizing the total travel time while considering factors such as ship speeds, refueling time, and the non-linear fuel consumption rates. A unique aspect of this study is the consideration of a group of ships with different origins and destinations. To solve the non-linear and NP-hard model, a hybrid genetic algorithm–particle swarm optimization algorithm is developed. The proposed model and meta-heuristics are demonstrated using an actual network consisting of ports around the world. Numerical results from a full factorial design with three factors (number of ships, number of origins, and number of destinations) comparing the travel time differences between using ammonia and conventional fuel indicate that NH3-fueled ships generally experience longer travel times than jet-propulsion fuel 8-fueled ships because of NH3’s lower energy density and more frequent refueling requirements. On average, the increase in total travel time is less than 20%. This study serves as a foundation for decision-makers who must also consider additional factors such as economic feasibility, infrastructure costs, environmental impact, and regulatory requirements when assessing ammonia’s viability as an alternative fuel for fleet-wide adoption. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  4. This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  5. Abstract Interactions among the El Niño‐Southern Oscillation, Indian Ocean Basin mode (IOB), and Indian Ocean Dipole (IOD) significantly impact global climate variability and seasonal predictions. Traditionally, positive IOD (pIOD) and IOB warming events are associated with El Niño, driven by its influence on the tropical Indian Ocean through Walker Circulation anomalies. Our findings enrich this framework, revealing that a pIOD without El Niño can independently trigger IOB warming, and both types of pIODs can induce La Niña events. While El Niño primarily forces IOB warming and subsequent La Niña development via the atmospheric bridge across the Maritime Continent, pIODs independent of El Niño influence IOB warming through oceanic dynamics, which further favors La Niña development in the following year. The NMEFC‐CESM model sensitivity experiments underscore the critical role of thermocline processes in this mechanism, dependent on the pIOD's temperature amplitude, offering vital insights for forecasting post‐IOD, IOB, and La Niña events. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available April 14, 2026
  8. This study investigates the integration of reduced graphene oxide (rGO) films as ground plane in miniaturized RF/mm-wave systems for advanced thermal management applications. Traditional methods such as copper-based heat spreaders struggle to handle the increased power and tighter integration requirements of modern day RF/mmWave packaging. Due to rGO’s exceptionally high in-plane thermal conductivity (∼1100 W/mK), when compared with copper (∼400 W/mK), rGO emerges as a compelling candidate for thermal management in RF electronic packaging. This study investigates the use of rGO to form a ground plane in RF and microwave electronics, evaluating its performance through meticulous transmission line simulations and measurements. Our findings reveal that rGO ground planes exhibit high signal integrity, with an average loss of about 1 dB at 10 GHz and around 2 dB up to 26 GHz, comparable to the performance of traditional copper ground planes. These results indicate that rGO is a promising material for RF and microwave circuits, especially in applications requiring enhanced thermal management and mechanical flexibility. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  9. Maturing of additive manufacturing (AM) techniques has increased their utilization for fabricating radio frequency (RF) and microwave devices. Solid composites used in material extrusion AM have experienced considerable expansion over the past decade, incorporating functional properties into 3D-printed objects. There are encouraging indications from AM material research that electrically efficient AM materials can be discovered. These materials would be useful for producing microwave components in the future. One of the enabling techniques for fabricating these materials is to incorporate nano/microparticles or fillers into thermoplastic material. Composite material 3D printing is a novel approach to managing materials’ microwave properties. While extrinsic qualities (effective permittivity) can be controlled by shape and porosity management, intrinsic attributes are tied to the composition of composites. Furthermore, combining various materials to increase the spectrum of available microwave characteristics is made possible by multi-material 3D printing. In this chapter, we explore different methodologies to fabricate ceramic/thermoplastic composites for fused deposition modeling (FDM) of RF and microwave devices. Analytical models for predicting effective permittivity of the composite are discussed and application examples of FDM printed RF, microwave and mm-wave devices employing composites are presented. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  10. Free, publicly-accessible full text available January 1, 2026